C'est à cela que sert Physics Forests, une suite d'effets physiques implémentés par de l'apprentissage automatique. L'entraînement se fait sur d'autres simulations, effectuées à une assez haute précision. En 2017, sur une carte graphique NVIDIA GTX 1080 (le haut de gamme, donc), l'équipe zurichoise arrivait à simuler une dizaine de millions de particules en temps réel dans le contexte d'une simulation de fluides plus, semble-t-il, que NVIDIA FleX, par exemple).
L'approche suivie est ici fondamentalement différente des autres solveurs : bien que l'élément fondamental soit la particule (partagé par certains moteurs physiques comme FleX — on parle de simulation PBF, le déplacement de ces particules ne suit pas les équations de la physique (Navier-Stokes, pour des fluides, par exemple), mais le résultat d'une boîte noire (le modèle d'apprentissage). Cette dernière effectue une régression sur le résultat qu'une simulation traditionnelle obtiendrait dans ces conditions. Les prédictions que l'on obtient alors sont assez proches des résultats des simulations d'origine : on peut même qualifier ce moteur physique de plus stable, vu que les prédictions ne s'écartent pas vraiment de la plage de valeurs en entrée, une particule n'aura pas une accélération très grande dans certains cas pathologiques — une propriété désirée, mais pas forcément facile à obtenir. Le principal point d'intérêt est que la prédiction est plus facile à effectuer qu'une étape de simulation de Navier-Stokes : on peut gagner un facteur cent à mille en temps de calcul !
Contrairement à bon nombre d'applications d'"intelligence artificielle", Physics Forests n'utilise pas de réseaux neuronaux, même si ceux-ci seraient particulièrement adaptés aux calculs sur processeur graphique surtout avec des cartes NVIDIA Turing).
Plutôt, le projet se focalise sur des forêts d'arbres de régression (d'où son nom), des modèles nettement moins coûteux à entraîner et souvent tout aussi performants pour des tâches courantes. Toutes les contraintes d'une simulation physique ne sont pas explicitement implémentées : ainsi, même si l'eau n'est pas compressible (si on met de l'eau dans un piston, peu importe la force que l'on applique, on n'arrivera pas à faire diminuer le volume d'eau), Physics Forests… ignore le problème. C'est une des caractéristiques qui permet d'augmenter sa stabilité, même dans le cas où l'utilisateur impose des interactions très dynamiques, au risque d'obtenir une solution assez écartée de la solution "physique".
Les développements actuels portent sur une variété d'autres effets physiques souvent coûteux en temps de calcul : corps rigides, fracturation, destruction, avec l'objectif d'améliorer d'un facteur similaire les temps de calcul. Aussi, en vue de la commercialisation de la technologie, des extensions pour les moteurs de jeu et des outils d'animation sont en cours de développement.
Source : Physics Forests: Using Machine Learning for Real-time Fluid Simulation.
Voir aussi : les vidéos réalisées par l'équipe.
Site officiel.